
Journal of Engineering Mathematics 18 (1984) 235-246. 
© 1984 Martinus Nijhoff Publishers, Dordrecht. Printed in The Netherlands. 

Unsteady flow from a source in a rotating fluid 

S.H. SMITH 

Department of Mathematics, University of Toronto, Toronto M5S 1.41, Canada 

(Received March 23, 1984) 

Summaff 

A source, which is situated on the axis of a rotating fluid, commences to expel fluid with constant rate at the time 
t = O. We describe how the geostrophic forces lead to the formation of a narrow column along the axis, before 
the eventual development of the viscous Stewartson column along the axis, and how the final steady state is 
achieved. An understanding of the role of the non-linear inertial forces in the neighbourhood of the source is 
given. The results are also extended by considering the effect of placing the source between two infinite discs 
situated perpendicular to the axis of rotation. 

1. Introduction 

The first important results concerning the transient development of flows in a rotating 
fluid were included in the now classical paper by Greenspan and Howard [1]. In this work 
they discovered the basic process whereby fluid in a cylindrical container is spun-up, after 
an impulsive rotation is imparted to the cylinder, in a time which is O(E-1/2) where E is 
the Ekman number; if diffusion alone acted the time would have been the much longer 
O(E-1).  For simplicity, the majority of their discussion centred on the geometry with two 
infinite discs, but in the process they were able to show the crucial role of the Ekman 
layers in the whole process. Their's was a linear theory, but it was easily seen that the basic 
conclusion is unaltered when the Rossby number is finite. 

The next major step, to understand the effect of the side wall of the cylinder during 
spin-up, was presented by Wedemeyer [2]. He developed a highly approximate non-linear 
analysis to show the possibility of a cylindrical wave front, which propagates from the side 
wall into the fluid, across which there is a discontinuity in shear; experimental evidence 
justifies this model. Improvements to Wedemeyer's results have been presented, and many 
accurate numerical calculations have been performed (cf. Warn-Varnas, Fowlis, Piacsek 
and Lee [3]), all of which help to confirm the basic idea. 

One area where there is less certainty concerns how the different boundary layers on 
the side wall are formed; in fact, it is still not clearly known what the thicknesses of these 
layers are when the Rossby number is O(1). A first step in this understanding was the 
paper by Smith [4], where an attempt was made to extent the linear theory to the 
parameter domain where inertial forces need be included. However, even for the linear 
regime, the analytical results were complicated, being left sometimes as double integrals, 
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and not particularly straightforward to interpret. The purpose of the present paper is to 
give some of these procedures a more precise description.. 

The model we investigate is that of a point source of fluid, situated on the axis of a 
rotating fluid, which commences to act impulsively at the time t = 0. Therefore, this is a 
fundamental solution for unsteady flows in a rotating fluid, and because there is no 
natural length scale, the solution found is valid for all source strengths ~. It is shown that 
the non-linear forces act initially within a distance O(c 1/3) from the source, but that this 
domain grows continuously in the direction parallel to the axis up to a distance which is 
O(cE -1) by the time 0(~2/3E -1) has elapsed for the final steady state to be developed. (A 
slightly different description follows when the source strength is very weak when ~ << E 3/2, 
but this is of lesser interest.) Outside this domain the flow is governed by linear equations 
throughout the development, and these can be completely solved. The main interest is in 
the formation of the column, through the action of inviscid geostrophic forces, when the 
time after the impulsive beginning is small compared to 0(E-1/3). The flow can be 
described by a single similarity variable rt/z (r and z are the non-dimensional radial and 
axial distances, respectively), and the governing equations are linear, fourth-order dif- 
ferential equations which can be formally solved in terms of Bessel and Struve functions. 

When the source is placed between parallel discs, which otherwise rotate with the fluid 
as a solid-body, then it is necessary to restrict the source strength by ~ << E to ensure a 
linear domain. We find (Section 5), that the time for the potential vortex to form in the 
fluid is the spin-up time 0(E-1/2), as it is for the column with radius O(E 1/4) to be 
formed. During the time that the inviscid column is being developed the flow can be 
described by an infinite set of sources which are reflections of the basic source in the 
discs; however, because of the columnar nature of the flow, the dominant contribution is 
given by just the first reflection. 

This fundamental solution is of interest in itself, but we also find (Section 6) that the 
ideas presented are easily extended to the situation when he point source is replaced by a 
ring source at r = 1, z = 0 (the axial symmetry is retained). During the early stages of 
spin-up in the circular cylinder, the Ekman layers transport mass along the discs to the 
corner regions, which then propagates into the interior as if flowing from a ring source in 
the corner (cf. Moore and Saffman [5]); this was also clearly evident from the time 
dependent description of Smith [4], and that this analogy was relevant for all c << 1. This 
observation motivates the extension. An inviscid layer forms along r = 1, with properties 
very similar to those in the column described earlier, and with the same balance of forces. 
The changes in the analysis are mostly simplifications, and are mathematical in nature 
rather than physical. It is apparent that all vertical shear layers in a rotating fluid pass 
through this stage during the beginning of a spin-up process. 

2. The fundamental solution 

A fluid rotates with constant angular velocity ~2, and we consider the flow due to a source 
placed at the point O on its axis of rotation; the source commences to expel fluid at a 
constant rate from the time t = 0. Let a be the reference length, and ar, az represent radial 
and axial distances from the origin O; the physical time is measured by ~2-it. We write 
~au(r, z, t), ~ao(r, z, t) and flaw(r, z, t) for the radial, azimuthal and axial velocities 
respectively; the pressure is p~2a2p(r, z, t) when the constant density of the fluid is p. If 
the strength of the source c is such that the equations can be linearised, then writing 
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u=cU, v=r+cV, w=~W,p = 12r2 +EP,  we have 

Ur+ 1U+ W._= 18(r)8(z)H(t), 
r i" 

(2.1) 

U,- 2V= -Pr + E(U, + I u  - -~U + U..) (2.2) 

( 1 ) 
V , + 2 U = E  V r r + - V ~ -  V+ II.. , 

F 
(2.3) 

( 1 ) 
w,= - P . + E  Wr,+ - w r +  W~: ; 

" r 

(2.4) 

the parameter E is the Ekman number, defined a s  ulna 2, where u is the constant 
"kinematic viscosity of the fluid. In all which follows, E << 1. The only conditions to 
impose are that the velocities U, V, W ~ 0 as r, z ~ ~ .  This is seen to be the transient 
problem corresponding to the steady state situation considered by Smith [6]. 

The solution to the equations (2.1)-(2.4) follow on taking a Laplace transform in t, a 
Fourier cosine or Fourier sine transform in z, and a Hankel transform of order zero or 
unity in r; for example, with V(r, z, t) and W(r, z, t) we set 

V(k, a, s ) =  kf0~e S'dtf0~cos azdzfo~rV(r, z, t)Jl(kr)dr, (2.5a) 

W(k, a,s)= k fo~e-S'dt fo~Sin azdz fo~rW(r, z, t)Jo(kr)dr. (2.5b) 

The calculations are straightforward, and show 

kU + aW= ks-', sU- 2V= kfi-E( k 2 + a2)U, 
s~'+2U= -E(k2 +a2)V, sW=afi-E(k2 +a2)W, 

from which we can solve for V to find 

(2.6) 

~'=- 2k2(E(k2+a2)+s} (2.7) 

s[{ +o t+ + + 

Similar expressions follow for U, W and ft. We note that these are exact solutions of the 
linear equations (2.1)-(2.4), and are valid for all values of E. 

The inverse transform for (2.5) becomes 

1 rc+i~ s, r~ f ~  
V(r, z, t) = -57J~ e dsl c o s  azdaj J,(kr)V(k, a, s)dk. 

'W 1 c - -  i o o  " 0  

(2.8) 

There are two major approximations which can be calculated from the triple integral (2.8) 
corresponding to the two main time scales during which different forces are in balance. In 
the early stages of the flow development it can be expected that inviscid terms alone 
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dominate, and that the viscous terms come into prominence only as the flow from the 
source becomes more concentrated and the shear increases. Hence, in the first instance, we 
neglect the viscous terms in V by letting E ~ 0; two of the integrals in (2.8) can be 
evaluated to leave 

g=-l--L-f c+i~e'' ( s 2 + 4 ) d s  (2.9) 
~rir2.c_io~ s ( s 2 ( l + z 2 / r 2 ) + 4 } 3 / 2 "  

This integral (2.9) can be evaluated as the series 

V=-R--- ~ 1+2~n=1 ~ n - l - ~  . 2 ( R )  2 n]R2 j ], (2.10) 

where R 2 = r 2 + 22 ;  this series is convergent for all values of r, z, t. General though this 
result is, it does not reveal the dominant feature, which is the formation of the narrow 
columnar region along the axis of rotation which represents the response of the flow to the 
Taylor-Proudman theorem. Nevertheless, the role of the variable rt/R is suggested, and 
when we make the further approximation r/z << 1 in the integral (2.9) it follows that 

o 

V= - 7~fo ~Jl(x)dK 'To ( J , ( o ) n o ( O ) - J o ( o ) H , ( . ) }  
2r 2 

(2.11) 

(cf. Erdelyi et al. [7], p. 236), where Jn(o) are Bessel functions and Hn(o ) are Struve 
functions (c.f. Abramowitz and Stegun [8]); the similarity variable o is given by 

2rt 
o = ( 2 . 1 2 )  

Z 

The expression (2.11) must be seen as the approximation to the inverse transform (2.7), 
(2.8) as E ---, 0 for o = O(1) when r/z << 1. The thin column along the axis of rotation 
forms through the constraining effect of the linear geostrophic forces, and can be 
considered as developed once t >> 1, though the diameter of the column continues to 
narrow as O(t-1) a finite distance from the source. 

The expansion (2.9), and consequently (2.10) is a solution of the set of equations 
(2.1)-(2.4) with the viscous terms absent; also, making the approximation r/z small is 
equivalent to further neglecting the radial velocity term U t in (2.2). Hence, (2.11) is a 
solution of the equation of continuity (2.1) plus the momentum equations 

2V=Pr, V , + 2 U = O ,  W , = - P z ;  

eliminating U, W and P (and ignoring the delta function in (2.1)) shows 

V~r"+ 1 Vr t t - r  r -~ V" + 4V2z = 0" (2.13) 

We consider this, and the corresponding equation for the stream function in the next 
section. 
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The second simplification to (2.7), (2.8) follows from retaining the viscous terms, but 
taking a/3z << O/Or in the columnar region. This possibility follows from the absence of 
any Ekman layer in the flow, and enables us to set a z << k 2 in the inverse transform (2.7). 
The result shows, after completing two of the integrations, that 

1 o 
V= - -~ fo xJ'(~)e-"/2)'~'dx' z > O, (2.14) 

where 

Ez 
/.t = r 3  ; (2.15) 

and /~ = O(1); a similar result follows for z < 0 because V(r, z, t) is symmetric about 
z = 0. In the particular case/~ ~ 0, then (2.11) is recovered. 

Once we observe that for/ t ,  o = O(1), then ~ = E1/3tz-2/3 is finite, it becomes possible 
to delineate the different processes which lead to the formation of what we call the 
Stewartson column. For t = O(1) there is the initial adjustment to the introduction of the 
source flow, which leads, through the action of the Coriolis force, to the inertial column 
which is defined for large t by the similarity variable o = O(1); the radius of the column is 
O(t  -1) when z is finite. As the time increases to permit )~= O(1), which indicates 
t = O ( E  -1/3)  for finite z, viscous forces begin to act and the column is defined by 
/* = O(1), or r = O(E 1/3) when z = O(1). The final steady state, as previously described in 
[6], is attained as o ~ oo, or El/3t --* oo when z is finite. 

So far, only the analytical approximations for the azimuthal velocity V have been 
given; the corresponding expressions for the other velocity components are little different 
with, for example 

W= ~ M I ( o  ), for o = 0 (1 ) ,  (2.16) 

corresponding to (2.11), and 

xf0o W =  r-7 XJo(K)e-( ' /z) '9"d#, z > O, (2.17) 

for/~ = O(1), corresponding to (2.14). From both these integrals it can be confirmed that 
the total flux out of the source is constant through calculating f~rWdr.  

We now continue by considering several different extensions based on these results. 

3. Similarity solutions for the columnar region 

The equation for the azimuthal velocity V(r, z, t) during the initial stages of the 
development of the column when o = O(1) is given by (2.13); the same equation is also 
satisfied by the radial velocity U(r, z, t). When we introduce a stream function g ' ( r ,  z, t) 
by U = - r -  1 xi, z and W = r -  1 if'r, then • satisfies 

~%.- --It ~Z., + 4~z.. = O. (3.1) 
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Finally, both W and P satisfy the same equation 

1_ W W~rt'+ r r ' + 4 W ~ z = 0 "  (3.2) 

We now consider the general question of the existence of solutions to the equation (3.1) 
of the form 

2rt 
'~ = r " f ( o ) ,  o =  

Z 

where a is a constant. Substitution into (3.1) leads to the ordinary differential equation 

ozfi"  + (2a + 3) o f " '  + a(a  + 2 ) f "  + ozf  '' + 2o f '  = O. (3.3) 

It is now possible to write i f ( o ) =  o-ak(o) ,  and integrate the resultant equation once, to 
find 

o 2 k  '' + ok'  + ( o  2 - 1)k = Ao ~, (3.4) 

where A is the constant of integration. The equation (3.4) has three linearly independent 
solutions, two of which are the Bessel functions J] (o)  and Yl(o) for all values of a; the 
third solution can generally be written as the Lommel function (cf. Erdelyi et al. [9], p. 40) 
S,_ 1.](0), which can also be expressed in terms of the particular hypergeometric function 
o~F2(1;½(1 +a);½(3 + a ) ; -  1o2). In the special case when a = 0 ,  which is the ap- 
propriate value for the stream function in this problem, this third solution is just 
Hl(o ) -2~r-1 ,  where 111(o) is the Struve function. Hence, the four similarity solutions for 
qz(r, z, t) are proportional to Jo(o), Yo(o), Ho(o) and 1. 

The same general discussion for the equations (2.13) and (3.2) is also possible, though 
we omit the details here, except to report that for (2.13) the four similarity solutions for 
r2V(r, z, t)  are proportional to f~KJl(x)dK, fjKYl(x)dx, f ~ H ] ( x ) d K  and 1. 

The conditions to be satisfied for 't' are that 't' = 0 for o = 0 and ~t' ~ ½ as o ~ ~ - 
which ensures that mass is conserved. Consequently 

if, = ½{1 - J o ( o ) }  (3.5) 

is the correct solution, from which (2.16) follows. Similarly, for V, the result (2.11) is 
confirmed. 

4. The non-linear contribution 

As r, z ~ 0 the velocities in the azimuthal plane become large, and so it is inevitable that 
there is a region close to the origin where non-linear terms must be included. The full 
Navier-Stokes equations for r, z 4= 0 are 

Ur + r - l u  + Wz=O, (4.1) 

u t + uu r + wu~-  r - ' v  2= - p , +  E ( u r , +  r - l u ,  - r -2u  + uzz), (4.2) 
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v, + uv r + wv. + r - t u v  = E ( v .  + r-lv~ - r-2v + Vzz), (4.3) 

w,+ UWr + W ~  = --p: + E(wr~ + r- 'w~ + w~) .  (4.4) 

N o w  the linear analysis for small c has shown that we can introduce functions 't '  0 and 
V 0 and be able to write the stream function ~k = ~t'0(o ) and the azimuthal velocity 
v = r + cr-2Vo(o)  in the column where r is small with o = O(1). F rom the expression for v 
it is clear immediately that the linearization requires r>> fl/3. Further,  when these 
expressions for ~b and v are substituted into the angular momen tum equation (4.3), the 
non-linear terms are seen to be O(c2r 4z-1), and the linear terms are O(~r- l z  -1)  when 
o = O(1). These have equal order when r = O(cl/3);  a similar conclusion follows from the 
other  m o m e n t u m  equations. Consequently,  the size of  the domain  where the non-linear 
forces must  be considered as r---, 0, maintaining o = O(1), requires r = O(cl/3);  the axial 
dimension of  this domain  is z = O(ci /3l)  as t becomes large. The viscous terms are absent 
and the radial m o m e n t u m  equation reduces to the centrifugal force balance. 

Secondly, for the viscous Stewartson column where both g, o = O(1), it follows that 
tt = O(~.E-1/3z -4/3)  and v - r, w = O(cE-2 /3z  2/3) f rom (2.14), (2.16). Consequently,  the 
inertial terms in the angular momen tum equation a re  O(c2E-4/3z-7 /3) ,  and the linear 
terms are O(c E-1 /3z -4 /3) ,  so that the domain where non-linear terms must  be included is 
defined by r = O(cl/3),  z = O ( c E - 1 ) ;  this is unchanged from the domain found for the 
steady-state case (cf. Smith [6]) by equivalent arguments.  The scalings and the equations 
are also the same as given there, with the addit ion that the transient terms are included 
when the order of  magnitude for the time is 0 (  ~2/3E-1). The terms neglected are small 
compared  to those retained when c >> E 3/2 - a condit ion we retain throughout  this 
section. 

It is now clear that for finite times the non-linear effects are concentrated in the region 
where r, z = O(c~/3), but  as t increases this region grows in the vertical direction as 
z = 0 ( E 1/3t ), occupying the full non-linear domain with z = O (c E -  1 ) when t = O (c 2/3E- 1 ). 
However,  this time is still small compared  with O(E- I /3 z2 /3 ) ,  the time required for the 
steady state to be reached in the linear domain where ~ = O(1), z >> ~E-1.  Hence, the flow 
is quasi-steady in the non-linear domain  once t > >  e 2 / 3 E - 1 ,  while the steady in the 
non-l inear domain  once t >> c 2 / 3 E - 1 ,  while the steady state is being attained elsewhere. 

The remaining question concerns the formation of the shear layer in the region where r, 
z = O(cl/3).  When the flow is steady, Barua [10] and Squire [11] showed how the outf low 
f rom the source is restricted within a cylindrical column along the axis of  rotation; this is 
separated from the remainder  of  the flow by a shear layer with thickness O(E~/2) .  They 
at tempted to calculate its radius by different procedures,  but  because it was treated as a 
local flow the problem as posed was indeterminate,  and an extra assumption was 
necessary to give the precise value. Their conclusions agreed qualitatively with each other, 
a l though the precise value for the radius did differ. For  the unsteady flow, we define 
r = cl/3p, z = cl/3~ ", u = cl/36~ ', V = ~1/3.,~, W = cl/3y'//',p = ~ 2 / 3 ~ ,  for the resulting inviscid 

equations 

w,, + G + + p - '  q,,¢,"= 0, 

_p-1 2  

+ + = 
(4.5) 

the error in neglecting the viscous terms is O(Ec-2 /3  ) .  
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The equations (4.5) can, in principle, be solved as power series in t - the non-linear 
equivalent of the representation (2.10) - but this would give no hint of the development of 
the shear layer. It can, however, be seen that there does exist a solution for this set of 
equations, which utilizes their full non-linearity, in terms of some similarity variable, to 
indicate the formation of the shear layer. Although this discussion would perhaps be 
clearer following that given in Section 6, we complete it here in its more natural context. 
Specifically, we consider a solution for large t to the equation (4.5) of the form 

q/=  
(4.6) 

where ~ = ( p -  po(~')}a(t) is the similarity variable for some (as yet unknown) function 
a ( t )  which grows without bound as t increases; O and ~ are finite, and Oo(~) gives the 
radius of the shear layer when t is infinite, as considered by Barua and Squire. These 
representations ensure that (i) both the azimuthal and axial velocities are finite as t 
increases, (ii) the equation of continuity is satisfied, and (iii) the pressure gradient and 
centrifugal force balance in the radial momentum equation as necessary for consistency. 
When the expressions (4.6) are substituted into the third and fourth of the equations (4.5) 
it follows that in both equations the non-linear terms are O(1) and the transient terms are 
O((~/a);  the pressure gradient is O(a-a) ,  all for large t. Consequently, there is a balance 
between the inertial and transient terms when &/ct is finite, which requires a( t )  ~x e 't for 
some positive constant c; the pressure gradient is then negleigible in the axial momentum 
equation. That is, the development of the shear layer is measured by the variable 

= { O - P0(~')}e c' (4.7) 

as t increases, and the dominant terms in (4.5) during this period are ~p + Y¢/'¢ = 0, 
p-1 ~ 2  = ~p, ~ + q / ~  + ~ ~ = 0, ~ + q / ~  + ~ Y¢/'~ = 0. Clearly more information 
regarding the geometry of the shear layer is required before any useful further progress is 
possible, but the existence of the similarity variable (4.7) lends weight to the possibility 
that a similar mechanism for the development of the shear layer is present in this situation 
as for the Stewartson layer in the case of the source described in Section 6. After a large 
enough time has elapsed, the layer is sufficiently narrow for viscous forces to be included, 
and the final steady state as discussed by Barua and Squire is attained. 

One last point to observe is that the preceding comments on the non-linearity are valid 
for all values of c >> E 3/2 - even for finite or large c. The length scale for the problem is, 
in fact, defined partially by the strength of the source c, and although many of the 
calculations only have point when c is small, their validity goes beyond this restriction. 

5. A source between parallel discs 

An extension to the fundamental solution calculated in Section 2 is to consider the effects 
when the source is placed between two discs, which are normal to the axis, and rotate with 
the fluid at constant angular velocity ft. For simplicity we assume the source is situated at 
the origin, midway between the discs; however, the main conclusions of this section are 
independent of its location (cf. Smith [6]). The strength of the source is small enough for 
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the flow to be linear for all points a finite distance from the source, and this requires 
E 3/2 << c << E, following the results of the previous section. 

The azimuthal velocity V(r, z, t) for the fundamental solution, which follows from 
neglecting the terms EbZ/Oz 2 in the equations (2.2)-(2.4), and then evaluating the inverse 
Fourier transform, shows 

l f c+i~e  st r~ 
V= - ~ri %-i~ -s-dSJo 

where 

kJl(k~) 
e-SZdk 

{(E~ ~ + ~)~+ 4} 1~ 
( 5 . 1 )  

C(k , s )  [k-¼El/2kZ((Ek2 +S)2+4)W2]e-Od 
= - ( 5 . 5 )  

sinh Od + ¼EW2k { ( Ek 2 + s) 2 + 4} 1/2 cosh Od 

It follows that 

1 fc+i~ e st 
P = 2g-i~iJc_i= s ds 

×f~[e  -°z k - l C ( k , s )  c o s h O z ] ( ( E k 2 W s ) 2 + 4 ) l / 2  " " - Jo(kr)dk, (5.4) 
"0 

for z >~ 0, with C(k, s) representing some unknown function, as the general solution for 
the flow between the discs except for the thin Ekman layer of thickness O(E 1/2) along the 
discs z = _+ d. The expression for C(k, s) is found through satisfying the Ekman condition 

W=-¼E1/2(P~r+r-1P~) on z = d .  

exactly, to complete the solution. 

8 = k ( E k  2 + s ) ( (Ek  2 + s) 2 +4}  - ' /2 .  

equivalent expressions follow for U, W, P. consequently, when the discs are positioned 
along z = + d, then we can write 

f eS t 1 c+ioo _ds 
V =  ~ - i ~  

X f 0 ~ [ - 2 k e  -°z + 2 C ( k , s )  cosh 0z] {(Ek 2 +s)2 + 4}-1/2 . . Jl(kr)dk,  (5.2) 

1 r c + i ~  e st 
W =  - -  - - d s  

2~ri Jc- i~ s 

x / ~ [ k e  -°z + C(k, s) sinh Oz] Jo(kr)dk, (5.3) 
JO 
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Approximations can now be taken to describe the flow for the different time scales 
during which the development passes. To begin, we take r = O(1) and t = O(E -1/2) to 
find from (5.2) and (5.5) that 

v_- l : r  1(1- e " : ' ' ) ;  (5.6) 

in the interior the potential vortex requires the time O(E -1/2) to develop in a manner 
very similar to that present in spin-up. The fluid from the source is transported away in 
the Ekman layers, and it is the response of the fluid in the interior to this outflow which 
leads to the decreased azimuthal velocity. 

For the time range 1 << t << E-1/3, the inviscid column is being formed, and when we 
set rt = O(1) in the integral (5.2), using (5.5), it follows that 

Irt ( _ ~ )  ~rt z ) . j [  2rt ~ 
V = - - ~ z J  r ( 2 d -  [ ~ ) ,  O<~z<d, (5.7) 

w h e r e f ( x )  is defined in terms of Bessel and Struve functions as 

,:¢( x ) = Yl( X )Ho( x ) - Yo( x)Ha( x ); 

a similar result follows for - d  ~< z ~< 0. The first term comes from the fundamental 
solution (2.11), and the second term is its reflection in the plane z = d. Actually, there is 
an infinite set of reflected terms present, as could be expected from the essentially inviscid 
nature of the flow, but because of the columnar nature of the flow, with r small, this 
second term indicating just one reflection dominates all others. The corresponding 
expression for the axial velocity is 

2 t j [ 2 r t ]  2t ( 2rt ) 
W =  ~ ' ~ " i - ]  r ( 2 d _ z ) S ,  ~ , O ~ z < d ,  

to show zero axial velocity on z = d. 
When t =  O(E-~/3), the viscous El/3-column is formed along the axis; here the 

integrals can only be slightly simplified to show, for example, 

1 / , c + i ~ e "  [ ° * k c o s h ½ k s ( z - d ) j ~ ( k r ) d k ,  O<~z<d. 
V -  2~ri Jc-io. --~-ds% sinh½ks----~d- 

Finally, for the larger times O(E-1/z), the E1/4-column is formed, growing out of the 
narrower E1/3-column, but again, the azimuthal velocity can be evaluated no further than 

V- -2E-1/2(1-e -E':'/a) 
r 

E-3/4 f c+i°° eE'/ztx ((x+d- )I/2E-I/4r}dx, 
q - ~  c-i~ x(xq.-d-I) 1/2K1 1 

with r = O( E1/4), t = 0(E-1/2). 
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6. Ring source 

If the source of fluid takes the form of a circle with unit radius in the non-dimensional 
co-ordinate system, and the flow from this ring is constant throughout its length, then the 
mathematical formulation is the same as that given in Section 2, except that we just 
replace the delta function 6(r) by ~ ( r -  1) in the equation of continuity (2.1). This new 
situation can be seen as giving a simplified model for the early development of the flow 
due to the collision of fluid from the Ekman layers at the commencement of spin-up (cf. 
Smith [4]). The only result of this change of delta functions from the solution given 
previously is that now the transform functions U, V, W, P, as given through (2.5), (2.6) 
must now be multiplied by the Bessel function Jo(k).  

All the calculations of Sections 2-5 could, of course, be repeated; however, here we 
focus only on those of greatest interest. When ( r -  1) (Ez )  -1/3 and ( r -  1)t are finite, 
then the approximations lead to 

1 f z t /~  . k ( r -  1)e-~l/z)Ek'Zdk z > O, V --- - ~r J0 sin (6.1) 

which corresponds to (2.14) for the Stewartson column. The equivalent expression for the 
axial velocity shows 

W =  - lf02t/Zc°s~r k ( r -  1)e-°/2)E*'Zdk, z > 0, (6.2) 

it is clear that these represent the transient development of the similarity solutions given 
by Moore and Saffman [5]. 

As this layer is being developed, during times where 1 << t << E-1/3, geostrophic forces 
lead to the existence of the distinct limit as ( r -  1)t = O(1). In fact, directly from (6.1), 
(6.2) it can be seen that 

~ 1  {l_cos( 2(r- 1)t 
V= - ~ r ( r -  1) z )}'  

1 ( 2 ( r -  1) t )  
W =  - ~ r ( r -  1) sin -z ' (6.3) 

when we explicitly require (r - 1 ) t / z  = O(1); these are attractively simple formulae for the 
inviscid state of the development of the E 1/3 Stewartson layer. 

The equation satisfied by both the expressions (6.3) is X rr t t - l - 4X zz  = O, and when 
X ( r ,  t, z ) =  ( r  - 1)-af(~'), ~" = 2 ( r -  1) t / z ,  then 

The four linearly independent solutions for this equation are f(~)oc 1, cos ~, sin ~ and 
f~d vf~ o u-  t cos( u - v )d u. 

The non-linear terms need to be included in the development of this layer where 
~=  O(1) when r - 1  = O(¢1/2), and so the domain grows as z =  0(~.1/21). The time 
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requ i red  for the E 1/3 Stewar t son  layer  to fo rm is O ( ¢ E  1), a n d  the iner t ia l  forces are 
p re sen t  in the reg ion  where  r -  1 = O(¢1/z),  z = 0 ( c 3 / 2 E - 1 ) .  

W h e n  the r ing  source  is p laced  m i d w a y  b e t w e e n  two hor izon ta l  discs a long  z = + d the 

a z imu tha l  veloci ty  develops  d u r i n g  the sp in -up  t ime • = E1/2t  = O(1), wi th  

0, r < 1, 
V =  - 2 E - l / 2 r - l ( 1  - e - V / a ) ,  r > 1. 

W i t h i n  the E1/4-1ayer the express ions  can  be  s impl i f ied  for the az imu tha l  velocity,  to 

) 
- e ' ° / # e r f c  + d ) - e - ' ° / ~ e r f c ( 2 - - ¢ ~ -  d ' 

where  ~0 = ( r  - 1 ) / E  1/4, for ~0 > 0; a s imi lar  express ion  follows for o~ < 0. 
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